INFLUÊNCIA DA FRAÇÃO DE ÁGUA TRANSPIRÁVEL NO SOLO SOBRE O NÚMERO DE FOLHAS DO CAFEEIRO CONILON

RR Rodrigues¹ (Mestre em Produção Vegetal), SC Pizetta² (Graduando em Agronomia, CCA-UFES), GO Garcia³ (Professor do CCA-UFES), EF dos Reis⁴ (Professor do CCA-UFES).

A disponibilidade de água no solo influencia direta e indiretamente o desenvolvimento e produção das do cafeeiro conilon, pois a redução da água disponível no solo à níveis críticas leva à redução drástica no desenvolvimento inicial do cafeeiro.

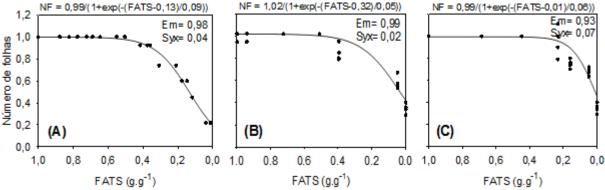
Desta forma, quando a disponibilidade de água no solo é reduzida, as plantas respondem em diferentes níveis, como, morfológico, fisiológico, celular e metabólico. Por isso, o conhecimento das relações entre a deficiência hídrica no solo, a transpiração e o crescimento das plantas é fundamental para entender a resposta do cafeeiro ao déficit hídrico.

Um conceito bastante utilizado na avaliação das respostas das plantas ao déficit hídrico é a fração de água transpirável no solo (FATS). Nessa metodologia assume-se que o conteúdo de água no solo utilizado pela planta para a transpiração varia entre o conteúdo de água no solo na capacidade de campo, quando é máxima, e o conteúdo de água no solo, quando a transpiração da planta é igual a 10 % da máxima (SIMCLAIR & LUDLOW, 1991). Este parece ser o conceito que mais se aproxima como indicador da quantidade real de água no solo que pode ser extraída pelas plantas para a transpiração (SANTOS & CARLESSO, 1998).

O trabalho foi desenvolvido em casa de vegetação instalada na área experimental do Centro de Ciências Agrárias da Universidade Federal do Espírito Santo (CCA-UFES), localizada no município de Alegre-ES. Foram utilizadas mudas de *Coffea canephora* Pierre ex Froehner, conhecida popularmente como café Conilon, variedade Robusta Tropical (EMCAPER 8151 – Robusta Tropical).

O experimento foi constituído de dois tratamentos (com déficit hídrico – T_d e sem déficit hídrico – T_0) e quatro repetições. Os tratamentos foram iniciados aos 30, 60 e 90 dias após o plantio. As plantas que receberam o tratamento T_0 foram irrigadas diariamente, mantendo a umidade do solo próxima à capacidade de campo. No tratamento T_d , o déficit foi aplicado até as plantas atingirem 10% da transpiração relativa do tratamento T_0 .

A variável avaliada foi o número de folhas do cafeeiro conilon, sendo determinado a cada quatro dias para cada tratamento.


Resultados e conclusões

As relações entre as variáveis, número de folha normalizada (NF) e fração de água transpirável no solo (FATS), nas três épocas de déficit hídrico, encontram-se na Figura 1, em que se observa o decréscimo da NF à medida que a FATS diminui até zero.

Na primeira época de déficit hídrico, a variável número de folhas começou a sofrer reduções a um valor de FATS de aproximadamente 0,6. Na segunda época de déficit hídrico, o cafeeiro apresentou pouca redução no valor da FATS no qual o número de folhas começou a ser reduzido, com valor de aproximadamente 0,6. Na terceira época o cafeeiro apresentou redução no valor da FATS no qual o número de folhas foi reduzido, com valor de aproximadamente 0,4.

Desta forma, pode-se observar que quando o déficit hídrico foi aplicado aos 90 dias após plantio (Figura 1C), o cafeeiro apresentou maior resistência à redução do número de folhas, evidenciando melhor resposta dessas plantas ao estresse hídrico quando mais desenvolvidas.

Existe uma correlação positiva entre o número de folhas e a área foliar do cafeeiro, sendo assim, com a redução do número de folhas do cafeeiro ocorreu também uma menor área foliar, sendo esse parâmetro de grande importância na fotossíntese da planta, reduzindo, consequentemente, a produção de fotoassimilados, o que contribui para um menor desenvolvimento da planta.

Figura 1. Número de folhas do cafeeiro conilon (NF) em função da fração de água transpirável no solo (FATS), em três épocas de déficit hídrico ("A"- 30 dias após plantio; "B"- 60 dias após plantio e; "C"- 90 dias após plantio), em casa de vegetação. Em: Eficiência do modelo, Syx: Erro-padrão da estimativa.