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ABSTRACT

Precision Agriculture (PA) technologies introduction in coffee-growing is becoming essential to advances in sustainable cultivation and increase in output.
Applications that involve PA techniques in coffee production are defined now as Precision Coffee growing (PC). Systematically explored, studies on the
subject contribute to improvements in the area, relating soil variability to its impacts on plants. The PC’s scientific approach offers new forms of manage-
ment and more security in coffee production. Aimed at reducing pesticides application and nutrients to the soil, contributing to sustainable development
in coffee production. Initially, the research on coffee production had dealt with soil spatial variability, highlighting the geostatistical methods and specific
ways to sample the soil. With technological advances in agriculture, new ways of monitoring spatial variability are available. In this context, studies are
arising on spatial variability related to the plant, applying terrestrial, aerial and orbital sensors, possibly creating perspectives for monitoring and mapping
coffee production. Artificial intelligence, Remotely Piloted Aircraft (ARP) products, harvesting yield sensors, automatic grain classifiers, and remote sensing
stand out as new technologies under development in coffee production. These applications in PC involving multidisciplinary research demonstrate new

relevant ways of improving crop managing and sustainability guaranteeing.

Key words: Digital agriculture; spatial variability; sustainability of cultivation; remote sensing; Sensors.

1 INTRODUCTION

Several regions of the world cultivate coffee plants, such
as Africa, Asia, Oceania, North America, Central America, and
South America. In Africa, the countries that stand out in coffee
production are Ivory Coast, Rwanda, Burundi, Congo, Angola,
and Kenya. In Asia and Oceania, these countries are Indonesia,
Vietnam, Thailand, Yemen, and India. In North and Central
America are Mexico and Costa Rica. In South America, the
countries that stand out are Brazil and Colombia, revealing
worldwide importance to production, exportation, and quality
of the drink among countries like Venezuela, Ecuador, Peru,
and Paraguay. A remarkable characteristic of coffee production
in those regions listed above is that the rural properties are
mainly composed of small areas with family agriculture.
Brazil is highlighted as the world major coffee producer. It
is possible to find greater areas that cultivate coffee related
to agribusiness, and, also, it is possible to find small family
farmers in this country. Due to these different worldwide
coffee producers’ characteristics, Precision Agriculture (PA) in
the coffee field can be applied differently to other crops. In this
way, PA application can be a differentiation for this cultivation.

Many pieces of research are being made focused on the
application of PA to coffee cultivation. Nowadays, there is a
noticeable tendency to study applications of 4.0 agriculture or
digital agriculture in various cultivation, and it is clear that the
scientific community has been pushing for research with PA in
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coffee production to move towards these new trends. However,
in coffee production, some issues need to be corrected before
following scientific and market trends so that PA can practically
be applied on coffee farms.

In coffee production. the PA still needs to be developed
and implemented. However, there is still a propensity to
research. defunded, and adopted due to the benefits and adopted
due to the benefits it can bring as efficiency. environmental and
economic sustainability. Some technicians and producers sought
solutions that were not comparable to grain production. Due to
the importance of coffee production for exportation and world
consumption, in addition to agronomics characteristics, coffee
cultivation has gained a specific designation, which Alves,
Queiroz and Pinto (2006) called precision coffee-growing (PC).

PC was defined by Ferraz et al. (2012a) as a conjuncture
of techniques and technologies that aim to support the
management of coffee crops. It bases on the spatial variability of
soil and plant attributes, seeking to maximize profitability. the
efficiency of fertilization, spraying treatments, and harvesting,
resulting in elevated yield and best quality of the grain. From
the development new technologies. those definitions can and
should be updated as well as their ultimate goals. This way,
PC can be defined as updated techniques and technologies use
that aim to maximize crops profitability, increase operations
efficiency, search for business sustainability, environmentally
sustainable production, and unceasing search for maximizing
yield and improving product final quality.
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This literature review aims at demonstrating how
research has been carried out with PC. Observing the
technology use evolution and its degree of application and
examining the PC applications and their trends. This review
will address spatial variability topics for soil, plant, yield,
pests, and diseases. Applications at variable rates, vyield
sensors, remote sensing in coffee growing, remotely piloted
aircraft, new technologies, and economic studies. leading the
reader to a deep understanding of the characteristics that make
PC so different from other cultures.

2 SOIL SPATIAL VARIABILITY

Knowing the variability of soil attributes is essential
for precise crop management, considering the application of
fertilizers, sampling strategy and the field research project
(Bhatti et al.. 1991; Cambardella et al., 1994). Soil attributes
generally vary over time and can also differ in space. This
variation is due to the action of natural agents and human
inference, manifesting itself with greater intensity in some
attributes (Stolt et al., 2001).

Soil attributes variability mapping. especially those that
control crop yield, is an important factor in a production system
that aims for sustainability through localized management
(Cora et al., 2004; Grego: Vieira 2005). Attributes variability
in the soil studies is evidence of some findings of obtaining
information by sampling collection through sampling grids.
Melo et al. (2017) describe the challenges for work with
PA and report the difficulty in defining the sample area size
because larger grids may not reflect dependent attribute study
and tiny grids up cost much for collection and laboratory
analysis. Establishing a necessary number of samples to
determine soil properties results in optimized work and allows
a better representation of such attributes (Santos et al., 2017).
The methodology to define the sample grid size depends on
the investment of time and financial resources. The cost is one
of the most significant limitations for collecting information
on an adequate scale (Neto et al., 2006).

Companies and rural producers working in PA have
used different grids and different sampling methods per grid.
In coffee growing. the most used commercial grids used one
point per hectare (Ferraz et al., 2011) and continue to be the
most used nowadays. Some methodologies for soil sample
collection were researched to enable the mapping of the soil
spatial variability attributes in coffee growing. Assessment of
soil attributes through regular grids was also available in work
developed by Silva et al. (2007). From geostatistical analysis
results, the authors concluded that all the soil variables
analyzed showed remarkable spatial dependence.

Using the regular grid method, Sanchez et al. (2005)
evaluated the spatial variability of soil properties, chemical,
granulometric, and coffee yield. All variables analyzed showed
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spatial dependence, chemical and granulometric properties of
intensively managed soils show spatial dependence in the face
of variations in relief terrain.

The geomorphological variations influence on spatial
distribution characteristics of soil attributes encouraged studies
to define management zones related to terrain relief. (Sanchez
et al., 2013) presented specific management mapping areas to
predict soil attributes and coffee grain quality. In addition, they
have studied the soil quality attributes and their relationship to
relief. Their analyzes presented the soil-relief relationships in
the Digital Elevation Model (DEM) and combined application
for the hybrid mapping of areas. contributing to coffee
production management.

Aiming to increase the soil sampling assertiveness,
Ferraz et al. (2017a) developed the Accuracy Index (AI). the
Precision Index (PI), and the Optimal Grid Indicator (OGI)
that possibilities to choose the best soil sample grid for coffee
crops. Using 20 different sample grids and the soil chemical
attributes: phosphorus, remaining phosphorus, potassium, and
potential CEC, the authors concluded that the OGI allowed the
sampling grid choice of three points per hectare. Figueiredo
et al. (2018) expanded the methodology proposed by Ferraz
et al. (2017a) and tested the standardized (AI). standardized
(PI). and the standardized (OGI) in smaller grids. The authors
concluded that the 2 points per hectare grid best represented
the coffee crop attributes.

2.1 Spatial variability of physical soil attributes

Spatial distribution mapping of granulometric soil
fractions contributes to decision-making in coffee growing.
These soil characteristics are considered in fertilizer
application. mechanized practices. soil conservation and
irrigation management.

The spatial variability of some physical attributes was
investigated by Simdes et al. (2006) that carried out a study
in the soil layer from 0 to 20 cm to assess the density levels
of clay, silt, sand, and particles. The authors concluded the
influence of slope and soil variability management and found
that the areas with greater soil overturning showed trends
towards uniformity of the physical attributes. In addition. soil
management can lead to an absence of spatial dependence
for particle density. An experiment conducted by Lima, De
Oliveira and Silva (2012) evaluated deeper soil layers to know
the water use by the roots. The study was collected soil up to
0.40 m in depth. The authors concluded that the granulometric
fractions presented from low to medium spatial variability
since the contents of clay and total sand had divergent
correlations to the sampling depth.

Management influence on the variability of soil physical
attributes was identified in the study by Burak, Santos and Passos
(2016). Using factor analysis and geostatistics, the authors
identified groups of soil attributes, spatial variability and the
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relationship between yield and relief. The soil attributes related
to particle aggregation were not associated with the relief and
yield. It was observed that the spatial variability was influenced
by the management, as it presented less continuity and less
spatial dependence at the layer of 0 to 0.10 m and by the pure
nugget effect puro at a depth of 0.10 to 0.20 m. Microporosity
and humidity increased at higher altitudes and lower slopes.

Assessments searching to identify soil variability for
the precise cultivation of coffee have become relevant with
applications of PA techniques in coffee growing. Carvalho et
al. (2013) have collected data on soil density. soil resistance to
penetration, and clay content, at different depths and height and
coffee plants vield. They observed that yield and plant height
are higher in regions with higher soil densities. In addition,
found higher vield and plant height in areas with lower clay
contents and lower soil resistance values to penetration.

The distribution of soil physical attributes (granular
sand, fine sand, silt, clay and soil density) and its spatial
relationship with the coffee yield were evaluated by Silva and
Lima (2013) that used multivariate geostatistics methods. In
this study, the yield and the soil physical attributes presented
spatial distribution with high continuity.

In different depth layers, Carvalho et al. (2014) evaluated
the wvariability of gravimetric moisture and clay content of a
coffee plantation. For all variables evaluated, it was impossible to
identify the variability existing in the field only using descriptive
statistics. Regarding geostatistical analysis, all variables showed
strong spatial dependence. allowing the creation of thematic
maps. Thematic maps comparing, it was observed in regions
with the lowest clay lower gravimetric moisture values. This
study highlighted the importance of applying geostatistical
techniques for variability characterization.

Researchusing geostatistics was presented by Kamimura
et al. (2013). Trenches were made at the intersections of a 40
X 150 m rectangular grid to characterize soil macroporosity,
soil microporosity, soil density, soil penetration resistance and
soil total porosity. The authors concluded that the soil physical
attributes presented a spatial dependence structured in all
layers, except for total porosity. In addition, it highlighted out
that the 0 to 0.03 m layers showed a physical impediment to
roots growth due to higher density and low soil porosity.

Use geostatistical analysis intensive influenced the
proposal of a method that best fits the spatial variability
characterization of soil physical properties. The study conducted
by Santos etal. (2017) evaluated data of the soil physical properties
by statistical and geostatistical analyses. It was observed that the
physical properties have a better spatial dependence structure
when adjusted to the spherical model, except for particle density.
The authors also stated that establishing the number of samples
and studying soil physics spatial variability is useful in sampling
strategies. This can minimize costs for farmers within a tolerable
and predictable level of error.

In order to identify critical zones of soil compaction
through soil penetration resistance (SPR) using spatial
distribution Andrade et al. (2018). conducted a survey,
collecting data on positions within the coffee line and in
certain depths of the soil. The data was interpreted based on
geostatistical analysis to identify the spatial dependence on
SPR and generate maps, which showed the spatial behavior
of the variable. The authors proved the spatial dependence of
SPR, based on the classes presented in the literature. The RSP
values in the tractor’s trail, for the layers of 0.10 to 0.20 m and
0.20 to 0.30 m. were classified as the high RSP class, which
may cause crop damage. This information contributes to data
collection strategies in mechanized crops due to the variations
in compaction caused by agricultural machinery traffic.

Soil physical attributes mapping confribution for
irrigation was researched by Jorge et al. (2019). They evaluated
the plant vield spatial variability of nutrients in the saturation
soil extract. They showed that the yield and soil chemistry
varied over the study site. Thus, the authors concluded that
maps generated from geostatistics are valuable tools for soil
management in fertigated coffee crops.

Applications to identify soil attributes behaviour was
also used in unconventional soil. In Terra Preta de Indio (TPI)
soil Junior et al. (2017) collected samples and analyzed particle
size, aggregate stability, total organic carbon, carbon stock,
macroporosity, microporosity, soil density, total porosity,
soil resistance to penetration. and volumetric moisture.
From the descriptive statistical and geostatistical analysis,
they concluded that the soil physical attributes showed
weak to moderate spatial dependence. This demonstrates the
geostatistical analysis ability and grid sampling collection to
characterize crops variables in unconventional soils.

2.2 Spatial variability of chemical soil attributes

Spatial wvariability evaluation of soil chemical
properties has become an essential aspect of soil management
strategies, aiming at greater yield Carvalho. Silveira and Vieira
(2002). The knowledge of the spatial variations of chemical
attributes of the soil can contribute to the rational application
of resources, allowing economic and environmental gains.

Advanced statistics use allowed the efficient spatial
characterization of soil chemical attributes. Evaluating the co-
kriging interpolation efficiency to estimate calcium according
to pH. Costa and Lima (2011) studied geostatistical analysis to
quantify the attributes’ spatial dependence degree and estimate
values of chemical attributes. The authors stated that Ca and
pH attributes showed high correlation and spatial dependence
in the area, showing that the co-kriging technique is an efficient
interpolation method to estimate spatial distribution accurately
of calcium.

Chemical soil attributes spatial dependence by
associating geostatistics and multivariate analysis (Exploratory
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Factor Analysis), researched by Almeida and Guimardes
(2016), performed in a grid of 63 sample points, arranged in
Coffea arabica L. plantation in the cerrado vegetation. Showed
that the association of geostatistics and multivariate analysis
provides interesting results regarding the spatial distribution of
the soil chemical attributes. This study facilitates or provides
the interaction of soil attributes when these are spatially
dependent.

Soil chemical variability after removing a coffee
plantation was studied by Vieira et al. (2009). The chemical
attributes measured were pH, organic matter, K+, P, Ca2+,
Mg2+, potential acidity., NH4-N, and NO3-N. In the study,
samples were collected in a grid, and the authors found
moderate to strong degrees of spatial dependence from 31 to
60 m. Similar results were found by Santos et al. (2014) that
collected soil sampling in a regular grid. The data was analysed
by geostatistics, and all attributes showed a dependency
structure, moderate to strong. A higher range was found for
potential acidity (33.58 m). Lima et al. (2013) were collected
soil samples in a grid with 50 points. The chemical attributes
studied were available P, Na, S, exchangeable Ca. Mg, and
Al pH. H + Al SB. t. T, V. m, MO, NaSI., P- remaining, and
micronutrients (Zn, Fe, Mn, Cu, and B). Using multivariate
analysis techniques in association with geostatistics, main
components 1 and 2 showed moderate spatial dependence, with
greater spatial continuity observed for component 1. which
allowed better characterization of soil acidity. Using the same
type of sampling grid and statistical techniques Silva S. A. et
al. (2010) determined the spatial variability of attributes P, K,
Ca, Mg, clay, sand and silt. They highlighted the interaction
importance between physical and chemical attributes.

Geostatistical techniques applications and descriptive
statistics to characterize the chemical variability in the soil are
applied in conventional and organic cultivation areas. Silva,
A.F etal. (2010) proved that all soil chemical attributes have
spatial dependence in both managements. The soil’s chemical
characteristics presented less spatial variability in organic
management than conventional management, indicating the
possible homogeneous zones for applying fertilizers.

Variability mapping of soil chemical attributes was
also analyzed by temporal variability. Ferraz et al. (2012a)
used geostatistics to assess the soil chemical variables of
phosphorus and potassium in three agricultural harvesting
years. Through the analysis, the authors established that it was
possible to characterize the extent of the spatial variability for
the attributes under study, which showed greater variation in
time and space.

Macronutrients spatial wvariability as calcium (Ca),
magnesium (Mg), phosphorus (P) and potassium (K) in a
conilon coffee crop was studied by Santos et al. (2015).
Examining a quadrangular grid with 60 points and samples
at each point were collected soil samples at a depth of 0 to
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0.20 m. These analyzes showed that all macronutrients under
study showed solid spatial dependence. The greatest range of
spatial dependence was for Mg (32.4 m) and the smallest for
Ca (8.1 m). Oliveira A.R. et al. (2018) performed this type of
characterization, which observed better correlations between
the attributes pH and Ca 0.65 and K and Mg 0.39. Ferraz et
al. (2019) developed a study to spatial variability determine
of soil pH in water, available phosphorus (P), sodium (Na),
potassium (K). calcium (Ca), magnesium (Mg), aluminum
(Al); acidity potential (H + Al), organic matter (OM), sum of
bases (SB). cation exchange capacity (T), base saturation (V%)
and Al saturation (m%). This study corroborates with others
that concluded that it is possible to map the soil variables of a
coffee field using geostatistics.

Almeida and Guimardes (2017) studied the chemical
attributes: Boron (B). Zinc (Zn), Iron (Fe), Manganese (Mn),
and Copper (Cu). They found that B and Zn showed spatial
solid dependence, Cu and Fe moderate spatial dependence and
manganese present a pure pepita effect. The authors stated that
modelling the spatial distribution of micronutrients contributes
to management decisions for these elements in coffee crops.

Characteristics of a collection can influence spatial
variability mapping of the soil. In many cases, the attributes
variability analysis is carried out individually to avoid
spatialization errors. Ferraz et al. (2017b) investigated the
spatial distribution magnitude of soil attributes and mapped
chemical attributes by conventional and grid sampling. They
recognized the differences presented in the contents of pH. P,
Prem. K. Ca, Mg, AL H+ Al m, T. t, SB. V, and MO in the soil,
when compared to conventional sampling and georeferenced
grid for application in precision coffee-growing.

3 SPATIAL VARIABILITY OF PLANT-RELATED
ATTRIBUTES

The mapping of yield in a crop refers to an important
phase of PA. Consequently, in the harvest, producers obtain
the results of their efforts. For the cultivation of cereals, the
necessary methods and equipment are relatively known, well-
founded, and widespread. There are fewer studies on coffee
in the literature. and there is still no specific technology for
this culture available on the market, making it harder to collect
yield data in real-time.

Yield maps can be used as a starting phase to assess
the causes of variability in crop yield. as well as to verify the
possible events or causes for changes in the managing system
in specific locations. The yield map can be considered the
completest information to visualize the spatial variability of
crops (Molin, 2006).

Given these characteristics, some methodologies for
mapping the vield spatial variability have been proposed.
Coffee production allows the use of mapping methodologies not
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only in mechanized harvesting but also in manual harvesting,
as it is possible to see in different studies. Sanchez et al. (2003)
installed a grid with regular spacing of 50 m between points,
totalling 68 points for each plot. They evaluated coffee yield
by manually collecting coffee grains per plant. The coffee yield
map was made based on the estimated values by kriging. The
authors concluded that there is little variation in the pattern of
the spatial distribution of yield in the two years evaluated, and
despite the management activities, the kriging maps showed
the same spatial behaviour in the different years of evaluation.

In their work. Silva et al. (2008) performed the manual
harvesting in two cycles, on coffee in the cloths of 4 plants
around sampling points, properly georeferenced using GPS.
The volume harvested from each plant, after shaking, was
measured in a container graduated in liters. The authors
concluded that there was spatial variability in yield. and the
spatial dependence of this variable was considered strong. Silva
and Lima (2012) applied a sampling grid containing 50 points.
After the harvest was done manually, the yield calculation
was converted into yield per hectare. The quantification of the
degree of spatial dependence was performed by geostatistical
calculations. It was noticeable that the most significant
proportion of the area under study had values between 6 and 8
mg.ha*, representing between 100 to 130 bags.ha™.

Miranda, Reinato and Da Silva (2014) created a yield
estimator. Their research evaluated the plant’s phenological
attributes: height, number of fruits in the 4th and 5th
internodes of the plagiotropic branches, length in meters of
the coffee lines, and diameter measured in the lower region of
the plants. Thus, the authors presented a model that considers
the proportion of the coffee canopy volume closer to the real
architecture of the plant, with a significant 0.83 coefficient
determination. Rocha et al. (2016) mapped vield in 1 hectare
by creating mathematical models for crop forecasting. In this
area, 50 sample points were collected, and the differences
(residues) between the observed vield and the yield obtained
by the estimator models were analyzed. The attributes showed
spatial dependence, making it reasonable to distinguish
between areas with greater and lesser variability observed in
the kriging maps.

Following the co-kriging methodology. Lima et al.
(2016) estimated the yield using as a covariate the number of
productive branches per plant and defining a sample grid with
109 georeferenced points (five plants per point). The yield
and the number of productive branches per sampling point
showed linear correlation and spatial dependence in the three
harvests collected. They showed that the covariable productive
branch is efficient in estimating yield. Carvalho et al. (2017)
georeferenced 100 sampling points. From geostatistical
analyzes, they identified and characterized the spatial
dependence of vield by adjusting semivariograms. The maps
created made it possible to observe the spatial distribution of

the yield, the non-uniformity of yield in the experimental area,
and the difference between the two studied years.

Ferraz et al. (2017a) studied the yield spatial variability
in an area of 22 hectares cultivating Coffea arabica. The coffee
yield (L.plant!) was obtained through manual harvesting
on the cloths of the four plants around the georeferenced
sampling point. The data were adjusted using a spherical model
semivariogram and ordinary kriging interpolation. The authors
characterized magnitude and spatial dependence structure of
coffee crop yield by adjusting the semivariogram. Besides,
they described that geostatistics is an important methodology
for data analysis in PA field. Ferraz et al. (2019) also carried
out the manual harvesting of coffee fruits in an area of 10
ha of arabica coffee, applying geostatistics to map the vield
in L plant!. Demonstrating the capability of geostatistical
techniques for use in precision coffee-growing.

Applying the descriptive analysis method, followed by
Pearson’s correlation analysis between soil attributes, plant
agronomic characteristics, and altitude Jacintho et al. (2017)
defined management zones for precision coffee growing,
which, through correlation analysis, observed that altitude
was the variable that most correlated with yield. Thus, this
was the most favourable variable for generating management
zones and thematic maps to assist coffee producers. Defining
management zones for selective harvesting based on coffee
fruit yield and maturation was proposed by Kazama et al.
(2021). The authors concluded that it was not possible to carry
out the selective harvesting of the fruits even though maps for
management zones were successfully done.

Thus, it is possible to conclude that in this subtopic. a
wide range of studies used manual harvesting to coffee crops
map. Still, this review will also contemplate studies that used
sensors to measure the yield of coffee crops.

Some studies were developed in coffee plantations
to characterize the nitrogen content variability and map
its presence in the plants. For this. chlorophyll analysis is
performed mainly using digital chlorophylls, which allow
reading directly in the field, without the need to remove leaves
and send them to the laboratory.

Alves, Queiroz and Pinto (2006) monitored the
chlorophyll content of 818 coffee plants using a portable
digital chlorophyll meter. The readings were performed
monthly between September 2003 and March 2004, in four
leaves per plant, at the average height of the plant, in four
opposed branches selected. Prado. Machado and Prado (2015)
conducted a study georeferencing sampling chlorophyll
content in an area of irrigated coffee with a central pivot to
generate management zones for irrigated coffee farming,
based on measurements with chlorophyll sensor (SPAD)
and apparent electrical conductivity (CEA) of the soil. The
authors concluded that management zones generated by the
chlorophyll sensor SPAD and CEA values of the soil presented
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a weak positive correlation. Likewise, they defined three
different management zones for water and soil, maximizing
natural resources use and minimizing production costs with
the appropriate application of fertilizers and agricultural
corrective supplies.

Research by Zanella et al. (2020) presented a spatial
correction between chlorophyll indices and NPK leaf contents.
Thisstudyevaluated spatial correlations betweenthe chlorophyll
index (CI) and the leaf levels of nitrogen, phosphorus, and
potassium (NPK) in coffee culture. Furthermore, the authors
estimated the potential use of this index as a tool for managing
site-specific nutrients in an irrigated coffee plantation. The
study was carried out in an area of 2.1 ha under cultivation of
arabica coffee. For the analysis, geostatistical tools were used
under the inferences made. In this research, the potential of
the chlorophyll meter was demonstrated as effective for the
management of site-specific nitrogen in coffee cultivation. as
opposed to the CI, which was not recommended for P and K
management, since they were not well correlated. Finally, as
a tool that performs indirect measurements, the results of the
chlorophyll meter must be validated by field measurements for
local calibrations.

The structure characterization, spatial distribution
magnitude biophysical characteristics of the plant is
essential information for precision coffee-growing. This
mapping contributes to the application of pesticides. pruning
management and harvesters regulation.

Analyzing defoliation through the effects of manual
harvesting and biennial production of coffee Silva, F. M. et
al. (2010) conducted an irregular grid of 25 x 25 m collecting
67 points. Defoliation was quantified based on leaf weight
(F) (kg Plant-1) after manual harvest. The variability and
pattern of spatial dependence on coffee vield and defoliation
were analyzed using geostatistics. The kriging maps directly
correlated the spatial variability of plants with higher yield
and bigger defoliation in the same year. They were verifying
alternation in this behaviour, characterized by the biennial
production of coffee crops over space and time.

Carvalho et al. (2013) assessed the spatial variability
of the coffee plants” physical soil attributes and growth
characteristics. The data was collected in an irregular grid of
24 georeferenced points. The coffee plants height from the soil
surface was measured using a scale in millimetres, and the
results were expressed in meters. Variables spatial dependence
was analyzed by adjusting the semivariograms using the
classic estimator. Through geostatistical analysis, the authors
observed that the height variable has a strong degree of spatial
dependence.

Mapping the plant foliation and spatial distribution
demonstrating in coffee plantations, Ferraz et al. (2017b)
conducted a survey applving a sampling grid of 100
georeferenced points. For the assessment of foliation, a visual
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scale was used, with variations ranging from 0 to 20%, 21 to
40%, 41 to 60%, 61 to 80%, and from 81 to 100%. Analyzing
the spatial variability on the map of the foliation, the authors
observed that a large part of the area presented foliation ranging
from 81 to 100%. The analysis of these data using statistical
and geostatistical techniques made it possible to characterize
the spatial variability of the foliation, allowing the mapping of
this variable.

Canopy Diameter and Plant Height are important growth
characteristics of the plant that indicate its development. These
features are closely related to the management imposed on
crops. Therefore, identifying the spatial variability of these
attributes and their consequent mapping can collaborate with
coffee producers to identify growth distortions occurring in the
field, facilitating their correction Ferraz et al. (2017b). These
authors have studied the canopy diameter and plant height by
geostatistical analyses. The canopy diameter was obtained
by measuring the most extended branch. A scale was used to
measure the plant height from the soil surface to the top of the
plant. The authors concluded that it was possible to map both
variables and find out their spatial variability.

Coffee producers face challenges for is determining
the appropriate time to start harvesting coffee due to the
plant’s shape. lack of uniform maturation, and high moisture
content of the fruits. Since the mechanized harvest operations
are carried out by vibration Santinato et al. (2015), spatial
variation maps of the fruit’s detachment force, for example,
can assist farmers in identifying the areas where harvesting
should start Ferraz et al. (2012c¢).

Using geostatistical analysis, Ferraz et al. (2014)
studied the coffee fruit detachment force. It was used an
irregular grid with 48 georeferenced sampling points. A
portable dynamometer obtained the fruit’s detachment force.
The authors concluded that the semivariograms provided a
satisfactory approach to model the detachment force of mature
and green fruits. Kriging maps showed that. in general, the
detachment force of mature and green fiuits is directly related.
The detachment force for mature and green fruits was inversely
related to coffee yield in most parts of the field. Therefore,
it was possible to identify the best place to start harvesting
mechanically and selectively using the fruit detachment force
maps.

In coffee crops irrigated by the central pivot, Figueiredo
et al. (2017) analyzed the spatial variability of the fruit’s
detachment force using a sample grid with 100 georeferenced
points. The portable dynamometer was used to sample fruits
in two maturation stages (green and mature). Kriging maps
analysis of the variables studied confirmed that the force for
removing green coffee fruits is greater than the force required
for removing mature fruits.

Baesso et al. (2019) analyzed the soluble solids spatial
variability in coffee. Mature fruits were collected from four
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branches. one pair on each side of the plants. Using a portable
digital refractometer, Brix level was read on fifteen fruits from
each sample. Two tasters performed the drink tests. The author
found spatial variability in Brix level values and proved that
this variability is related to drink quality.

Despite the contribution of assertive research on
identifying variability in plant characteristics. this mapping
for applications in precision coffee growing is still considered
costly. Since collections are carried out manually, this lack
of equipment for simultaneous and continuous collections is
considered a gap to be implemented in precision coffee-growing.

4 SPATIAL VARIABILITY OF PESTS AND
DISEASES

Mapping the spatial variability of pest and disease
damage is necessary for precision coffee-growing for efficient
control planning and targeted spraying. Contributing to the
reduction in the application of chemical products and cost
reduction in coffee growing.

Alves et al. (2009) conducted an experiment to identify
the magnitude and structure of the spatial dependence of coffee
rust and cercosporiosis, in a 6.6-hectare coffee plantation,
over three years. The authors aimed to identify the incidence
and severity of these diseases in 67 georeferenced points.
The authors made kriging maps for rust and cercosporiosis
that allowed the observation of disease intensity. distribution
pattern, and outbreaks of phytopathogens throughout the crop.
indicating that a located control can replace control strategies
based on the total area.

Employing statistical analysis techniques, Alves et
al. (2011) characterized the spatial structure and mapped the
spatial variation of the damage caused by the Hypothenemus
hampei and Leucoptera Coffeella in a coffee plantation. They
monitored 67 georeferenced points in three years and found
that mapping signals in fruit and coffee leaves caused by pests
can be useful in inferring the ecology and infestation of pests in
crops at different times of the year. With this, the establishment
of control strategies and tactics can be improved, enabling a
more effective control with less environmental impacts and
greater sustainability.

5 VARIABLE RATE APPLICATIONS IN COFFEE
CROPS

A variable-rate application system was first used in the
1990s in the United States and then gradually developed (Lan
et al., 2010). Providing the necessary inputs is essential for
the plant’s physiological maintenance and offers sustainable
agriculture. Besides, fertilizers, pesticides. and seeds are the
main sources of production costs (Bennur; Taylor, 2010:;

Tekin 2010). Some studies prove the variable rate application
efficiency, such as Irrigation at a variable rate (West; Kovacs,
2017: Pugh et al. 2019); Variable-rate spraying (Walklate;
Cross; Pergher, 2011; Wang et al.. 2019); Planting at a variable
rate (Virk et al., 2020) in different crops. Although various
research has shown efficiency for application at variable rates
in several stages and segments. this technique is still more
explored in fertilizer applications.

Chemical and physical attributes characterization
spatial variability of the soil made through sampling is
indispensable to apply PA. This mapping guides an application
zones managing system by variable rates, aiming to meet the
specific necessities of each location (Bottega et al., 2013).
Slightly inserted into coffee production. variable-rate fertilizers
application is still a technology to be studied deeply and has a
great potential for application, gaining more supporters every
day. Comparing the application in variable and fixed rates in
coffee production, Molin et al. (2010) observed a 34% increase
in vyield in areas that applied fertilizers at variable rates.
Phosphorus consumption decreased by 23%. and potassium
increased by 13% in the dose applied at a variable rate.

Ferraz et al. (2015) presented a form of mapping using
geostatistics for soil attributes, phosphorus and potassium, and
recommendations for application and evaluated the application
of fertilizers based on conventional methods and in a grid form.
The results demonstrated the variations of recommendations due
to the method. In spatial variability research, Silva et al. (2014)
evaluated Ca, Mg, P, K. and S levels in coffee plantations with a
PA system. The authors examined over three years that variable-
rate fertilizers application promotes the homogenization of
nutrients in the soil. Therefore, Valente et al. (2012) defined
management zones for coffee plantations based on the apparent
electrical conductivity spatial variability soil.

In a performance survey for variable rates application in
coffee culture, Barros et al. (2015) achieved important results
when testing a variable rate machine’s. The authors concluded
that system application at variable rates in field conditions
showed low variation and good accuracy. Andrade et al. (2020)
research evaluated the transversal application of fertilizers in
a centrifugal spreader. The study also compared the efficiency
between two methods of operation in applying fertilizers using
different doses of product and spreading at different rotation
speeds. The authors attested that the transversal application
proved practical and efficient, and the best results were found
in the applications on one side of the plants with a disk rotation
of 750 Rotations Per Minute (RPM).

Researching the wvariable rate application system
sustainability Angnes et al. (2021) analyzed how variable-rate
fertilization influences energy efficiency in coffee growing.
Their results indicated that the application of fertilizers at a
variable rate has a slight difference, meaning greater energy
efficiency about applied fertilization and coffee production per
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crop. But the energy balance was more efficient at variable
rates, as it provided fertilizer savings without compromising
productivity.

Accordingly, variable rate applications contribute to
increased vield and, consequently, to reduced costs. In coffee
production, it is important to evince that the adoption of
variable rate application techniques is still limited since coffee
production is undergoing considerable transitions regarding
agricultural mechanization, as it requires specific machines
for handling. Few machines are adapted to carry out fertilizer
applications at a variable rate in coffee crops. It is important to
note that this review found no studies for spraying at a variable
rate applied to coffee production.

6 YIELD SENSORS IN COFFEE GROWING

The Jacto Company (Maquinas Agricolas Jacto S.A,
Brazil) tested a productivity yield monitor for self-propelled
harvesters in mechanised coffee harvesting. They have
characterized a volumetric sensor integrated with the collector
on the furrow located at the end of the internal transport system.
Yield per hectare was obtained by manual sampling. necessary
to determine the correction factor volume. The getting yield
data proved appropriate, practical, accurate, and possible to be
incorporated into the harvester planning (Queiroz et al., 2021).

Martello, Molin and Bazame (2022) evaluated yield
data quality obtained through a yield monitor on board a coffee
harvester over three seasons. They showed a high correlation
between productivity data obtained by the monitor (above R2
0.968) about data from an instrumented wagon with load cells.
They also presented yield maps for three consecutive seasons,
identifying their internal variability and classifying them by
regions. This result demonstrates that knowledge of the spatial
variability of productivity and the formation of biennial variance
must be considered in site-specific management strategies.

The great challenge for obtaining accurate vield data
via sensors is directly related to cultivation characteristics,
such as varieties and different species, plant heights, diameters
and crowns, uneven maturation during fruit harvest and
plant ages. In addition. elements related to plantings. such
as spacing between plants and planting lines, mechanization
and planting system surfaced, circular or rectilinear, must be
considered. This low development is related to the interest of
companies in investing in the development of sensors and the
acceptance of producers with new technologies, which tend to
be less reactive.

7 REMOTE SENSING IN COFFEE GROWING

Precision agriculture, in recent decades, presented new
monitoring techniques. Significant advances are seen in the
introduction ofRemote Sensing (RS)technologies (Huangetal.,
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2018). These are techniques from sensors coupled to terrestrial
vehicles, aircraft, satellites, and portable radiometers that
provide spectral, spatial information on the surface of objects
(Chlingarvan; Sukkarieh; Whelan, 2018). Products derived
from RS can offer data and information in a short space of
time (Seelan et al., 2003). Adapting to PA needs (Haboudane et
al., 2002: Chemura et al., 2018). Collecting information about
the occupied area, location, spectral responses of the installed
crops, vegetation indexes, recognizing unusual problems and
economic sectors (Atzberger, 2013).

Applications of remote sensors in agriculture
are already important allies in monitoring and detecting
anomalies (Weiss; Jacob: Duveiller, 2020). Orbital or
platform sensors can identify fundamental vegetative
properties, link physical properties to ecological theory and
provide spatial and temporal databases (Ustin: Gamon, 2010).
Improvements in orbital sensors have marked significant
advances in remote sensing of vegetation over the past 50
years. Enabling identifying phenological and biochemical
structures in spatial and temporal scales (Houborg: Fischer;
Skidmore, 2015). Quality spatial production and spectral
information can contribute to agricultural planning and
decision-making (Moriya et al., 2017; Wolfert et al.. 2017).
In coffee plantations, monitoring using remote sensors is
systematically explored. This statement was supported by
studies by Devi and Kumar (2008), in which it showed the
positive insertion of satellite images for use in precision
coffee growing. Endorsing that the use of remote sensing
improves the efficiency and accuracy of the data in the crop.

RS technologies inclusion in coffee production has
become useful in macro and micro scale decision-making
(Almeida; Sedivama: De Alencar, 2017). In monitoring,
expansion, and quantification of coffee areas, orbital
sensors are used in several regions. In identifying altimetric
characteristics in coffee growing, Trabaquini et al. (2010)
showed orbital sensors used for macro-region studies is highly
accurate and can be compared with agricultural surveys
conducted by government agencies. Takahashi and Todo
(2017) processed Landsat images using automatic classifiers
to identify coffee characteristics for certification in Ethiopia.
Sarmiento et al. (2014) compared supervised classifiers, using
object-oriented image analysis and pixel-by-pixel image
analysis, in coffee areas’ discrimination in Quickbird images.
These authors demonstrated the potential of the Maxver
classifier algorithm for separating coffee areas in high spatial
resolution images and recommending the use of this pixel-by-
pixel image analysis algorithm.

In studies that used regression techniques by
multitemporal analysis in Landsat satellite images, Ortega-
Huerta et al. (2012) presented the RS’s potential for mapping
coffee areas in El Salvador. Also studying mapping techniques,
Souza et al. (2019) proposed a new methodology for mapping
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coffee fields, including multitemporal data as input parameters
in the classification process, through a Landsat TM NDVI
time series.

Kawakubo and Machado (2016) identified coffee fields
using multispectral images with a spatial resolution of 23.5
m. From Linear Imaging Self Scanner Instrument (LISS III)
onboard the Indian Remote Sensing Satellite System (IRS).
The method was efficient in isolating the coffee classes, with
an accuracy greater than 70%. from other categories of soil
use. Comparing the results obtained in this research with
a maximum conventional probability (ML) classification
revealed that when using the described methodology. the
confusions between the classes were less dispersed. and an
improvement of approximately 10% was observed in the
mapping of the coffee production classes. Using high-resolution
spectral data (WordView-2) in Hawaii, Gaertner et al. (2017)
evaluated two methods for detecting coffee plantations. The
study presented satisfactory results in applications of the
object-based image analysis (OBIA) methods, presenting an
accuracy of 81% in the identifications. In the study by Kelley
et al. (2018), techniques for detecting coffee plantation fields
cultivated in the shade were presented using the Google Earth
Engine platform.

Although the RS contributes significantly to coffee
plantations geolocation, this technology has emerged strongly
for monitoring and detecting anomalies. They are contributing
directly to decision-making and offering new forms of
monitoring in precision coffee growing.

Among these contributions, we can mention the
identification of crop vigor, phytopathogens symptoms,
nutritional deficiencies, yield, quality of planting, management
zones, among others. However, in coffee production, some
barriers are found in surveys handled using orbital images.
Yet, some orbital sensors have low spatial resolutions.

Coffee crop reflectance values are variable due to
heterogeneous surface coverage, influenced by planting
directions, crop spacing, time of year and plant age. Even
with those obstacles, some authors obtained satisfactory
results in research with orbital sensors and wvegetation
indices, as explained in the study by Bernardes et al. (2012),
who evaluated coffee production for eight years. Through
vegetation indices in images from the Moderate Resolution
Imaging Spectroradiometer - MODIS sensor, the authors
understood biennial effects and found good relationships
between vegetation indices and production. From vegetation
indices obtained through images Landsat 8. Nogueira, Moreira
and Volpato (2018) concluded that SAVI and NDWT indices
showed a correlation in the flowering phase in the year with
high yield. Marin et al. (2019a) identified the stress caused by
biotic and abiotic factors in coffee crops through vegetation
indices in Landsat 5 TM images. Ramirez and Junior (2010),
using the green and blue bands of the Quickbird images.

concluded that the use of images with the high spatial
resolution is promising in the study of coffee areas and showed
greater detail of the site, additionally to the detection of critical
biophysical characteristics for the crop. Pereira et al. (2013)
carried analyzes on vegetation indices based on GeoEye
images in coffee plantations and biomass measurement. Using
data from Sentinel-2, Jaramillo-Giraldo et al. (2019) analyzed
the relationship between the spatial-temporal variability of
the Leaf Area Index (IAF) and the crop coefficient (Kc) for
coffee crops. Thus, they demonstrated that the variable IAF
could replace Kc and is used to monitor water conditions in
the production area and analyze the spatial variability within
that area.

Spectral behaviour rates change of plants are altered
under attack by pests and diseases. High spectral resolutions of
the remote sensors, was used to detect and predict anomalies.
Marin et al. (2019b) presented an evaluation of the Landsat 8
OLI/TIRS multispectral sensor for monitoring the spatial and
temporal progress of bacterial burning in coffee. Relationships
between spectral radiometry, irrigation systems and coffee
rust were showed in research carried out by Pires, Alvesa and
Pozza (2020) from the Landsat-7 / ETM + and Landsat-8 /
OLI-TIRS satellite images. These authors obtained spectral.
spatial, and temporal patterns of the disease. Katsuhama et
al. (2018) focused on the standard deviation of NDVI values
(oNDVI). not as an index of statistical error, but as a new
effective indicator for monitoring the occurrence of rust in
coffee plants in the mountain regions of Guatemala. Sentinel
2B data is used to characterize nitrogen in coffee cultivation.
From the Random forest classification, these products present
satisfactory results in predicting nitrogen in coffee (Chemura
etal., 2018). Based on spectral responses of coffee leaves in the
fields, Martins, Galo and Vieira (2017) proposed monitoring
through RS in areas infested by nematodes, concluding that
this tool can be used in precision monitoring. Remote sensing
in a coffee plantation, using orbital sensors, has proven to
be an essential technology in several stages of cultivation.
Therefore, it still has some limitations, such as spatial and
temporal resolution. Given the need to obtain information
with high spatial resolution and in short time intervals, other
platforms are studied.

8 REMOTELY PILOTED AIRCRAFT (RPA) IN
COFFEE GROWING

Significant advances in sensors coupled to satellites
for platforms now offer spatial resolutions in centimeters
order. However, in emerging crop monitoring cases, such as
nutritional deficit analysis, crop forecast, anomalies, orbital
data may not be helpful, presenting low temporal resolution
(Zhang; Kovacs, 2012: Mateen; Zhu. 2019). Moreover,
limitations such as high costs, lack of operational flexibility.,

Coffee Science, 17:e172007, 2022



SANTANA, L. S. et al

and low spatial and temporal resolution are encountered. At
the orbital level, the presence of clouds is another factor that
intervenes with the acquisition of images. On cloudy days. the
passage of solar energy is blocked. Consequently, the surface
loses data from the image (Honkavaara et al., 2013).

Due to these characteristics, researchers explored
innovation on different platforms, which proved to be efficient
in obtaining remote data at minimal costs, such as airships
(Vericat et al., 2009: Inoue et al.. 2010) balloons (Vierling et
al., 2006) and kites (Aber et al., 2009). Although these are low-
cost platforms concerning the orbitals, their maneuvers are
manuals operationally impractical for some regions, making
the cultivations challenging to monitor. (Whitehead et al.,
2014)

Those restrictions were the starting point for new
technology insertion, the Remote Piloted Aircraft (RPAs).
However, there are several terminologies found in the
literature, such as Unmanned Aerial Vehicles — UAV (Peila et
al., 2013; Candiago et al., 2015; Lopez-Granados et al., 2016;
Tokekar et al., 2016), Remotely Piloted Aircraft Systems
- RPAS (Barry: Coakley, 2013), Remotely Piloted Aircraft -
RPA (Giles, 2016; Zajkowski et al., 2016), Remotely Piloted
Vehicles — RPV (Hardin; Hardin, 2010; Siebert; Teizer, 2014),
Unmanned Aircraft Systems — UAS (Whitehead et al., 2014)
and Remotely Operated Aircraft —- ROA (Uysal; Toprak; Polat,
2015).

Faced with various terminologies that have emerged to
represent these aircraft, (Swann, 2016) designated RPA as the
standard terminology. RPA concept refers to any aircraft that
can be remotely piloted to schedule and execute previously
planned autonomous flights (Santana et al., 2021b). This
technology has been gaining renown in several segments
recently (Bereta et al., 2018), explored for presenting images
with high temporal. spatial resolution, and low operating costs
compared to piloted aircraft and high-resolution satellites.
(Laliberte; Rango, 2011; Xiang: Tian, 2011). Low cost,
autonomous data collection, operation in climatic conditions, a
process in unfavorable climatic conditions, orbital collection,
image capture in dangerous environments, and high flight
stability are characteristics that make RPA a potential
technology (Torrado: Jiménez: Diaz. 2016). In addition to
being considered a new way of obtaining spatial. spectral, and
temporal quality parameters, they are lightweight equipment
and are versatile in coupling sensors (Hassler: Baysal-Gurel,
2019).

In agricultural fields monitoring, RPA technologies
are being introduced through PA. with advanced altitude
and positioning control systems, carrying high-resolution
digital cameras on board. These tools combined with remote
sensing techniques form a set to improve remote agricultural
monitoring (Lelong et al., 2008; Santana et al., 2019). They
provide valuable and specific information in a short period of
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adapting to PA needs (Chemura; Mutanga; Dube, 2017a). They
also offer detailed information about biophysical properties,
such as monitoring nutrients, phenology. pests and diseases;
production; and other activities in the planting areas (Putra et

al., 2020).
RPAs technologies, allied to precision farming
techniques, provide frequent monitoring in different

cultivations, improving managing quality and agricultural
applications (Santos et al., 2019b). Thus, it appears that there
are studies in the literature regarding technology in some
perennial cultures. Despite conclusive evidence on RPA
applications in coffee growing, few techniques are found about
this technology. RPA for coffee areas mapping can produce
fast products with low cost, high technological value, and
high precision. Applications of RPAs can be of fundamental
importance for coffee growing since they comprise mostly
small growing areas (Garcia-Freites et al., 2020).

Although few studies have already shown satisfactory
results for RPAs insertion in precision coffee growing, the first
approaches were conducted by (Johnson et al., 2004). The
authors collected geo-referenced images of the coftee crop in
2002 harvest, using RPA, and compared the image pixels with
the reflectance data collected in the field, creating an index of
maturation of the crop. Herwitz etal. (2004) used RPAto collect
images to monitor and support decisions in coffee plantations.
The authors found several aspects of crop management that
benefit from aerial observation. The study demonstrated the
ability to monitor RPA over a prolonged period. in addition
to obtaining images with high spatial resolution, mapping
outbreaks of grass growing., and differentiating the ground
cover in the monitored areas. Thus, RPA is a comprehensive
tool that complements satellites and piloted aircraft to support
agriculture.

Current studies are being developed in coffee production
due to sensors evolution and the accentuated remotely piloted
aircraft application. As discussed in the research by Oliveira,
H. C et al. (2018), the authors presented a technique for
detecting defects in coffee plants, based on the processing in
RGB images and morphological operators, with individual
identification and the total length of the defects. Santos et al.
(2019a) have proven the potential of the techniques to improve
the geometric errors of RPA images, with applicability in
coffee crops. Barbosa et al. (2021) demonstrated that the use
of low-cost UVAs and RGB cameras could monitor coffee
production through image classification processes (vegetation
indices). Studies by Cunha et al. (2019) shown a method to
estimate the volume of vegetation in coffee crops, using RPA
images, in addition to not finding significant differences with
the traditional survey method. Chemura, Mutanga and Dube,
(2017b) tested the ability of multispectral photos to assess
the water content of the plants, using algorithms as a way of
detecting and monitoring water stress.
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In an experiment with multispectral cameras, Velasquez
et al. (2020) tested a simulator for accurate detection of rust in
coffee. Its results showed significant correlations, proving the
model as excellent in terms of certainty and usefulness of its
diagnosis. The authors highlighted cameras similarity used in
RPA and the technological integration occurring for the actual
practice of coffee rust identification.

In images collected using RPA and manual field
measurements, Santos et al. (2020b) evaluated biophysical
meters and measures of height and diameter of the coffee plant
for twelve months. The authors attested that photogrammetric
products have significant capacity in estimating the size and
diameter of coffee plants. Additionally, it is used to analyze
biophysical attributes avoiding the need for sample collection
in the soil. In leaf area index evaluation (LAI), Santos, F. F. L et
al. (2020) aimed to monitor LAI evolution and the percentage
of soil cover (% COV) in coffee plants, using plant equations
and measurements obtained from 3D generated point clouds,
combined with the SfM algorithm application for digital images
recorded by a camera coupled to a UAV. This study made it
possible to determine a new way of monitoring LAI’s temporal
and spatial behaviour and % COV. In studies to analyze
mechanized planting quality in regions with high slopes,
Santana et al. (2021a) performed flights with ARP in an area six
months after transplanting. Their results demonstrated the digital
elevation model maps effectiveness obtained by ARP applied
in this type of monitoring. In addition to presenting statistical
process controls on plants and planting lines alignment.

Using RGB camera coupled in RPA, Mincato et al.
(2020) developed research to evaluate the vegetation indices
potential based on spectral bands and visible wavelength to
nitrogen concentration monitoring in coffee leaves. However,
the authors concluded that it was not possible to distinguish the
different levels of nitrogen concentration in coffee plants. Marin
et al. (2021a) determined the spatial variability of nitrogen (N)
in coffee leaves by evaluating the potential of the Random
Forest (RF) machine learning method applied to vegetation
indices (VI). From images of Remotely Piloted Aircraft (RPA),
ten vegetation indices (VI) were obtained. The suggested model
presented global accuracy and kappa coefficient of 0.91 and
0.86 for N classification in coffee leaves.

Applications of Unmanned Aerial Vehicle (UAV) in coffee
plants shown by Soela et al. (2020) obtained results in flight height
evaluations for spraying, analyzing the amount of spray solution
deposited on the leaf. Thus, employing control charts did not
detect negative patterns within the treatments, ensuring the quality
of applications in the coffee growing. Additionally, all treatments
were within the area limits, but at 1.0-meter flight height and A1l
genotype showed the best results for upper and lower deposition.
As seen in this topic, there are still several possibilities to explore
using RPAs in precision coffee-growing, which is a technology in
full expansion with great potential.

9 NEW TECHNOLOGIES

Coffee production has been incorporating new
technologies every day, even if it is not at the same speed as
other cultivations, to improve assertive decision-making, yield
and higher quality coffee fruits.

Coffee fruits harvesting is an essential step in cycle
growing, considered the final production stage process and
the moment for obtaining profits to farm. As explained in the
yield sensors topic, sensors type still have a weak insertion
in coffee production. Thus, other research aims to include
technologies to contribute to the producers defining the
harvest best time. According to the detachment force, Barros
etal. (2018) developed a classifier based on neural networks to
determine the moment coffee fruits harvesting. The classifier
differentiated between green and cherry fruits in the five study
moments and indicated the best time to perform the harvest.
Furfaro et al. (2007) developed a model based on neural
networks to obtain maturation percentage of coffee fruits using
multi-spectral images collected by a remotely piloted aircraft.
The errors found by the model used were considered lower
than the conventional methods based on field sampling.

Kazama et al. (2021) developed an automatic and non-
destructive method for counting coffee fruits and classifying
them in different maturation stages based on images. This
methodology evaluated two types of image collection, directly
in the field and collecting the branches and taking them to a
laboratory. This algorithm was based on neural networks and
predicted approximately one-third of the productivity in the
area. Avendano, Ramos and Prieto (2017) developed a system to
classify the vegetative structures in the coffee branches: leaves,
branches, flowers, green fruits. cane., and ripe. The authors
used 3D reconstruction using Structure from Motion (SfM) and
Patch-based multi-view stereo (PMVS) techniques. However,
the system was slow to process each branch and confused fruits
between mature, green, and green fruits with coffee leaves.

Another essential factor of mechanized harvesting is
to correct the harvester’s correct adjustment. which must be
done for the presenting conditions of the crop. Ferreira Jinior
et al. (2016) used a system to detect the vibration amplitudes
of the rods in the vertical direction of mechanized harvesting,
finding occurrences for the adjustments of 8 and 10Kgf in the
brake, in the vibration of 950 cycles min-1 of the cylinder,
and with rods of 570mm in length. The study by Ferreira
Janior et al. (2018) developed a low-cost system based on the
Arduino platform and accelerometers to track the trajectory
of the vibrating rods on a self-propelled coffee fruit harvester.
With the development of this study, the authors understood
the vertical and horizontal behaviour of the coffee stems and
related to the greater detachment of the coffee grains.

Research by Ferreira Junior et al. (2020) presented a
way displacement observing of coffee branches. Considering

Coffee Science, 17:e172007, 2022



SANTANA, L. S. et al

the frequency and amplitude of wvibration, the authors
developed a low-cost system utilizing instrumentation and
signal processing techniques. This analysis observed the
complete two-dimensional displacement of the coffee branches
to different configurations of harvesters during mechanized
harvesting and dynamic interaction between the machine and
the coffee plants.

Coftee prices are established mainly on grain quality.
Analyzing defects in grains and fruits is extremely important
to orient the separation at a higher rate. A computer vision
model to detect. classify and map the ripening stage of fruits
during harvest was developed by Bazame et al. (2021). The
detection and classification of coffee pods were carried
out using the object detection system called YOLOv3-tiny,
coupled to the discharge conveyor. They enabled video
detection and classification during harvesting and mapping
qualitative attributes related to the coffee maturation stage
along the cultivation lines. Santos F. F. L. et al. (2020), also
focusing on coffee beans quality, developed a work testing
different machine learning techniques, such as Support Vector
Machine (SVM), Deep Neural Network (DNN), and Random
Forest (RF). to identify grains defects. The study demonstrated
excellent performance of the classifiers similar to those
offered computer vision and machine learning algorithms.
In RGB (Red, Green. Blue) images obtained by ARPS and
computer vision algorithms, Barbosa et al. (2021) estimated
the height and diameter of canopy and coffee yield prediction.
In addition to proving the use of these techniques for yield
prediction models, they reduced the need for extensive data
collection (e.g. monthly data collection). Marin et al. (2021b)
developed a methodology for identifying coffee rust using
multispectral magnets and machine learning techniques in
vegetation indices.

Sott et al. (2020) made a bibliometric study on the use
of Agriculture 4.0 technologies and PA in coffee production.
For this study. 87 documents published since 2011 were used,
extracted from the Scopus and Web of Science databases and
processed through the protocol of preferred report items for
systematic reviews and meta-analyses (PRISMA). The themes:
Internet of Things., Machine Learning, and Geostatistics are
the most used technologies in the coffee sector, presenting the
main challenges and trends related to technology adoption in
coffee systems.

10 ECONOMIC STUDIES OF PRECISION
COFFEE PRODUCTION

PA is closely associated with highly technological
resources. However, experiences show that PA is not limited
to procedures that require highly sophisticated equipment
and investments. Any farm, including family, can adopt low-
cost actions and equipment (Inamasu et al., 2009). Besides,
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according to Oliveira et al. (2016), PA can be adopted by parts,
initially in operations considered essential to a given crop.
for example, soil correction, fertilization. pest. and disease
identification, among others. Therefore, studies related to the
costs of implanting and using PA techniques on a farm is very
relevant. Ferraz et al. (2011) performed a comparative analysis
between the differentiated and conventional fertilization
methods in coffee production. The authors evaluated three
different plots in two consecutive years, concluding that there
was a difference in phosphorus and potassium application
between the two fertilization assessed systems. Variable
fertilization was advantageous for 22 ha and 10.52 ha in the
two crops under study. The size of 6.23 ha was only beneficial
in the 2008/09 harvest, with less loss.

Investigating the performance parameters and related
costs in a set of machines, Andrade et al. (2020) researched
two operational modes in a 7.5 ha coffee plantation. The first
mode of operation (OM1) considered the recommended total
dose on only one side of the plants and covering only half of
the plot lines. In the second mode of operation (OM2). the
machinery applied half the recommended dose on each side
of the plants and covered all lines between plots. Performance
parameters included effective field capacity and effective time.
The authors concluded that OM1 implies greater effective

Assessing the technical and economic variability of
manual coffee crop maps, the research by Faria et al. (2020)
aimed to generate a linear regression model to estimate the
harvesting needed time and labour costs. These analyses were
by georeferenced sampling points and generating maps of
coffee vield. Four rural workers conducted manual harvesting
of the issues with experience in coffee harvesting. The volume
was measured through a graduated container and a digital
stopwatch obtained the period. Through this analysis. the
authors established a linear correlation model between harvest
time and yield, for which the R? value was 78.27. and the cost
was BRL 8.92 by point.

11 CONCLUSIONS

This literature review showed precision coffee growing
has been developing over the last decades, even though this
evolution has not followed the advancement of other annuals
crops.

The studies on soil spatial variability and plant attribute
variability are still widespread and have great relevance. Besides,
it observed that Remote Sensing had been successfully applied
for some years in coffee cultivation, mainly in different countries.

In coffee-growing management, improvements are also
attributed to the gradual application of several sensor models,
incorporated and expanded into the coffee crop. Moreover, new
techniques and technologies have been applied in precision
coffee production. such as Remotely Piloted Aircraft, Yield
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Sensors, Algorithms based on machine learning and image
analysis that are slowly becoming more frequent in the literature.

Therefore, precision coffee growing is renewed every
year, gaining new researchers, relevant studies, participants,
and users, making it a new focus for farmers. Furthermore, the
techniques presented in this review are important for achieving
sustainable forms of coffee production.
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